CDT++
Causal Dynamical Triangulations in C++
Loading...
Searching...
No Matches
test.py
1# Causal Dynamical Triangulations in C++ using CGAL
2#
3# Copyright © 2021 Adam Getchell
4#
5# First pass at ML for CDT++
6
7# @file test.py
8# @brief ML using TensorFlow
9# @author Adam Getchell
10
11# Usage: python test.py
12#
13
14import tensorflow as tf
15
16mnist = tf.keras.datasets.mnist
17
18(x_train, y_train), (x_test, y_test) = mnist.load_data()
19x_train, x_test = x_train / 255.0, x_test / 255.0
20
21model = tf.keras.models.Sequential([
22 tf.keras.layers.Flatten(input_shape=(28, 28)),
23 tf.keras.layers.Dense(128, activation='relu'),
24 tf.keras.layers.Dropout(0.2),
25 tf.keras.layers.Dense(10)
26])
27
28predictions = model(x_train[:1]).numpy()
29
30tf.nn.softmax(predictions).numpy()
31
32loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
33
34loss_fn(y_train[:1], predictions).numpy()
35
36model.compile(optimizer='adam',
37 loss=loss_fn,
38 metrics=['accuracy'])
39
40model.fit(x_train, y_train, epochs=5)
41
42model.evaluate(x_test, y_train, verbose=2)
43
44probability_model = tf.keras.Sequential([
45 model,
46 tf.keras.layers.Softmax()
47])
48
49probability_model(x_test[:5])