14import tensorflow
as tf
16mnist = tf.keras.datasets.mnist
18(x_train, y_train), (x_test, y_test) = mnist.load_data()
19x_train, x_test = x_train / 255.0, x_test / 255.0
21model = tf.keras.models.Sequential([
22 tf.keras.layers.Flatten(input_shape=(28, 28)),
23 tf.keras.layers.Dense(128, activation=
'relu'),
24 tf.keras.layers.Dropout(0.2),
25 tf.keras.layers.Dense(10)
28predictions = model(x_train[:1]).numpy()
30tf.nn.softmax(predictions).numpy()
32loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=
True)
34loss_fn(y_train[:1], predictions).numpy()
36model.compile(optimizer=
'adam',
40model.fit(x_train, y_train, epochs=5)
42model.evaluate(x_test, y_train, verbose=2)
44probability_model = tf.keras.Sequential([
46 tf.keras.layers.Softmax()
49probability_model(x_test[:5])