|
CDT++
Causal Dynamical Triangulations in C++
|
Calculate S3 bulk actions on 3D Delaunay Triangulations. More...
Include dependency graph for S3Action.hpp:
This graph shows which files directly or indirectly include this file:Go to the source code of this file.
Functions | |
| auto | S3_bulk_action (Int_precision const N1_TL, Int_precision const N3_31_13, Int_precision const N3_22, long double const Alpha, long double const K, long double const Lambda) noexcept -> Gmpzf |
| Calculates the generalized S3 bulk action in terms of \(\alpha\), \(k\), \(\lambda\), \(N_1^{TL}\), \(N_3^{(3,1)}\), and \(N_3^{(2,2)}\). | |
| auto | S3_bulk_action_alpha_minus_one (Int_precision const N1_TL, Int_precision const N3_31_13, Int_precision const N3_22, long double const K, long double const Lambda) noexcept -> Gmpzf |
| Calculates S3 bulk action for \(\alpha\)=-1. | |
| auto | S3_bulk_action_alpha_one (Int_precision const N1_TL, Int_precision const N3_31_13, Int_precision const N3_22, long double const K, long double const Lambda) noexcept -> Gmpzf |
| Calculates S3 bulk action for \(\alpha\)=1. | |
Calculate S3 bulk actions on 3D Delaunay Triangulations.
Calculates the S3 Bulk (and later, boundary) actions. Uses the GNU MPFR library for arbitrary precision arithmetic on floating point numbers. See http://www.mpfr.org for more details. Note: for performance reasons, variables should not hold successively increasing values. We avoid this by setting each variable only once. See https://gmplib.org/manual/Efficiency.html#Efficiency for details.
Definition in file S3Action.hpp.
|
inlinenoexcept |
Calculates the generalized S3 bulk action in terms of \(\alpha\), \(k\), \(\lambda\), \(N_1^{TL}\), \(N_3^{(3,1)}\), and \(N_3^{(2,2)}\).
The formula is:
\begin{eqnarray*} S^{(3)} &=& 2\pi k\sqrt{\alpha}N_1^{TL} \\ &+& N_3^{(3,1)}\left[-3k\text{arcsinh}\left(\frac{1}{\sqrt{3} \sqrt{4\alpha +1}}\right)-3k\sqrt{\alpha}\text{arccos}\left(\frac{2\alpha+1} {4\alpha+1}\right)-\frac{\lambda}{12}\sqrt{3\alpha+1}\right] \\ &+& N_3^{(2,2)}\left[2k\text{arcsinh}\left(\frac{2\sqrt{2}\sqrt{2\alpha+1}} {4\alpha +1}\right)-4k\sqrt{\alpha}\text{arccos}\left(\frac{-1}{4\alpha+1} \right)-\frac{\lambda}{12}\sqrt{4\alpha +2}\right]\end{eqnarray*}
| N1_TL | \(N_1^{TL}\) is the number of timelike links |
| N3_31_13 | \(N_3^{(3,1)}\) is the number of (3,1) and (1,3) simplices |
| N3_22 | \(N_3^{(2,2)}\) is the number of (2,2) simplices |
| Alpha | \(\alpha\) is the timelike edge length |
| K | \(k=\frac{1}{8\pi G_{Newton}}\) |
| Lambda | \(\lambda=k*\Lambda\) where \(\Lambda\) is the Cosmological constant |
Definition at line 252 of file S3Action.hpp.
References PRECISION.
Referenced by MoveStrategy< Strategies::METROPOLIS, ManifoldType >::CalculateA2().
|
inlinenoexcept |
Calculates S3 bulk action for \(\alpha\)=-1.
This result is i* the action for Euclidean dynamically triangulated gravity in three dimensions. The formula is:
\[S^{(3)}(\alpha=-1)=-2\pi ik N_1^{TL}+N_3^{(3,1)}\left(2.673ik+0.118i \lambda\right)+N_3^{(2,2)}\left(7.386ik+0.118i\lambda\right) \equiv iS^3_{EDT}\]
| N1_TL | \(N_1^{TL}\) is the number of timelike links |
| N3_31_13 | \(N_3^{(3,1)}\) is the number of (3,1) and (1,3) simplices |
| N3_22 | \(N_3^{(2,2)}\) is the number of (2,2) simplices |
| K | \(k=\frac{1}{8\pi G_{Newton}}\) |
| Lambda | \(\lambda=k*\Lambda\) where \(\Lambda\) is the Cosmological constant |
Definition at line 47 of file S3Action.hpp.
References PRECISION.
|
inlinenoexcept |
Calculates S3 bulk action for \(\alpha\)=1.
The formula is:
\[S^{(3)}(\alpha=1)=2\pi k N_1^{TL}+N_3^{(3,1)}\left(-3.548k-0.167\lambda \right)+N_3^{(2,2)}\left(-5.355k-0.204\lambda\right)\]
| N1_TL | \(N_1^{TL}\) is the number of timelike links |
| N3_31_13 | \(N_3^{(3,1)}\) is the number of (3,1) and (1,3) simplices |
| N3_22 | \(N_3^{(2,2)}\) is the number of (2,2) simplices |
| K | \(k=\frac{1}{8\pi G_{Newton}}\) |
| Lambda | \(\lambda=k*\Lambda\) where \(\Lambda\) is the Cosmological constant |
Definition at line 144 of file S3Action.hpp.
References PRECISION.